Graph Markov network for traffic forecasting with missing data
نویسندگان
چکیده
منابع مشابه
Bittorrent Network Traffic Forecasting With ARMA
In recent years, there are some major changes in the way content is being distributed over the network. The content distribution techniques have recently started to embrace peer-to-peer (P2P) systems as an alternative to the traditional client-server architecture. P2P systemsthat are based on the BitTorrent protocol uses end-users’ resources to provide a cost effective distribution of bandwidth...
متن کاملDiffusion Convolutional Recurrent Neural Network: Data-driven Traffic Forecasting
Spatiotemporal forecasting has various applications in neuroscience, climate and transportation domain. Traffic forecasting is one canonical example of such learning task. The task is challenging due to (1) complex spatial dependency on road networks, (2) non-linear temporal dynamics with changing road conditions and (3) inherent difficulty of long-term forecasting. To address these challenges,...
متن کاملSpatio-temporal Graph Convolutional Neural Network: A Deep Learning Framework for Traffic Forecasting
The goal of traffic forecasting is to predict the future vital indicators (such as speed, volume and density) of the local traffic network in reasonable response time. Due to the dynamics and complexity of traffic network flow, typical simulation experiments and classic statistical methods cannot satisfy the requirements of mid-and-long term forecasting. In this work, we propose a novel deep le...
متن کاملDEA with Missing Data: An Interval Data Assignment Approach
In the classical data envelopment analysis (DEA) models, inputs and outputs are assumed as known variables, and these models cannot deal with unknown amounts of variables directly. In recent years, there are few researches on handling missing data. This paper suggests a new interval based approach to apply missing data, which is the modified version of Kousmanen (2009) approach. First, the prop...
متن کاملForecasting with Missing Data: Application to Coastal Wave Heights
This paper presents a comparative analysis of linear and mixed models for short-term forecasting of a real data series with a high percentage of missing data. Data are the series of signi®cant wave heights registered at regular periods of three hours by a buoy placed in the Bay of Biscay. The series is interpolated with a linear predictor which minimizes the forecast mean square error. The line...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transportation Research Part C: Emerging Technologies
سال: 2020
ISSN: 0968-090X
DOI: 10.1016/j.trc.2020.102671